网上有关“散度梯度旋度的关系和应用”话题很是火热,小编也是针对散度梯度旋度的关系和应用寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
关系:
三者转换关系:
散度指流体运动时单位体积的改变率。简单地说,流体在运动中集中的区域为辐合,运动中发散的区域为辐散。 其计算也就是我们常说的“点乘”。 散度是标量,物理意义为通量源密度。
散度物理意义:对流体来说,就是流体的形状虽然改变,但是由于散度为0,则其面积或体积不变。如下式
梯度物理意义:最大方向导数(速度)
散度物理意义:对流体来说,散度指流体运动时单位体积的改变率。就是流体的形状虽然改变,但是由于散度为0,则其面积或体积不变。
旋度物理意义:旋度是曲线,向量场旋转的程度。矢量的旋度是环流面密度的最大值,与面元的取向有关。
扩展资料散度为零,说明是无源场;散度不为零时,则说明是有源场(有正源或负源)
若你的场是一个流速场,则该场的散度是该流体在某一点单位时间流出单位体积的净流量. 如果在某点,某场的散度不为零,表示该场在该点有源,例如若电场在某点散度不为零,表示该点有电荷,若流速场不为零,表是在该点有流体源源不绝地产生或消失(若散度为负).
一个场在某处,沿着一无穷小的平面边界做环积分,平面法向量即由旋度向量给定,旋度向量的长度则是单位面积的环积分值.基本上旋度要衡量的是一向量场在某点是否有转弯.
百度百科-散度
百度百科-梯度
百度百科-旋度
我们一个一个说:
首先是梯度:
定义:在标量场f中的一点处存在一个矢量G,该矢量方向为f在该点处变化率最大的方向,其模也等于这个最大变化率的数值,则矢量G称为标量场f的梯度。
如果设体系中某处的物理参数(如温度、速度、浓度等)为w,在与其垂直距离的dy处该参数为w+dw,则称为该物理参数的梯度,也即该物理参数的变化率。
在向量微积分中,标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。
其次是散度:
定义:div F=▽·F
在矢量场F中的任一点M处作一个包围该点的任意闭合曲面S,当S所限定的区域直径趋近于0时,比值∮F·dS/ΔV的极限称为矢量场F在点M处的散度。
由散度的定义可知,div F表示在点M处的单位体积内散发出来的矢量F的通量,所以div F描述了通量源的密度。 散度可用表征空间各点矢量场发散的强弱程度,当div F>0 ,表示该点有散发通量的正源;当div F<0 表示该点有吸收通量的负源;当div =0,表示该点为无源场。
最后是旋度:
定义:面元与所指矢量场f之矢量积对一个闭合面S的积分除以该闭合面所包容的体积之商,当该体积所有尺寸趋于无穷小时极限的一个矢量。
设想将闭合曲线缩小到其内某一点附近,那么以闭合曲线L为界的面积也将逐渐减小.一般说来,这两者的比值有一极限值,记作即单位面积平均环流的极限。它与闭合曲线的形状无关,但显然依赖于以闭合曲线为界的面积法线方向且通常L的正方向与规定要构成右手螺旋法则。
旋度的重要性在于,可用通过研究表征矢量在某点附近各方向上环流强弱的程度,进而得到其单位面积平均环流的极限的大小程度。
最后总结一下,梯度表征的是某点标量的变化率;散度表征的是某点通量的密集程度,可以理解为场线的密集程度;旋度表征的是某点附近发现上的环流强弱程度。
关于“散度梯度旋度的关系和应用”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
评论列表(3条)
我是当家号的签约作者“平文”
本文概览:网上有关“散度梯度旋度的关系和应用”话题很是火热,小编也是针对散度梯度旋度的关系和应用寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。关...
文章不错《散度梯度旋度的关系和应用》内容很有帮助