网上有关“高数 连续区间怎么求?”话题很是火热,小编也是针对高数 连续区间怎么求?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
因为f(x)是初等函数(即是基本初等函数的复合),所以在定义域的每一段都是连续函数。
所以这里只要求出f的定义域。
即√x/(2x-1)≤1,
x/(2x-1)≥0
可解出x≤0或者x≥1
所以空应填(-∞,0)和(1,+∞)
函数单调区间的求法
关于求函数的单调区间的方法如下:
1、对复合函数f(x)求导,得f’(x);
2、分别求f'(x)>0和f'(x)3、f'(x)>0则复合函数f(x)在x区间内单调递增;f'(x)4、根据所求区间与定义域求交集,即可得到单调区间。
单调区间有三种求解方法:
1、利用已知函数的函数图象,求解单调区间,常用的函数有:一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、对勾函数。
2、利用复合函数的单调性,同增异减的规律求解单调区间。
3、利用导数求解单调区间,先确定函数定义域,当导数大于0时为增函数,导数小于0时为减函数,确定单调区间。
判断复合函数的单调性的步骤如下:
1、求复合函数的定义域;
2、将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);
3、判断每个常见函数的单调性;
4、将中间变量的取值范围转化为自变量的取值范围;
5、求出复合函数的单调性。
扩展资料:
函数单调性的应用:
1、利用函数单调性求最值
求函数的最大(小)值有多种方法,但基本的方法是通过函数的单调性来判定,特别是对于小可导的连续点,开区问或无穷区问内最大(小)值的分析,一般都用单调性来判定。
2、利用函数单调性解方程
函数单调性是函数一个非常重要的性质,由于单调函数中x与y是一对应的,这样我们就可把杂的方程通过适当变形转化为型如“”方程,从而利用函数单调性解方程x=a,使问题化繁为简,而构造单调函数是解决问题的关键。
求单调区间的两种方法:
1、求导法:导数小于0就是递减,大于0递增,等于0,是拐点极值点。
首先根据函数图象的特点得出定义的图象语言表述,如果在定义域的某个区间里,函数的图像从左到右上升,则函数是增函数;如果在定义域的某个区间里,函数的图像从左到右下降,则函数是减函数。
2、定义法:设x1、x2,算出(f(x1)-f(x2))/(x1-x2),大于0就是递增,小于0递减。
其次给出函数的相应的性质定义的文字语言表述如果在某个区间里y随着x的增大而增大,则称y是该区间上的增函数,该区间称为该函数的递增区间;如果在某个区间里y随着x的增大而减小,则称y是该区间上的减函数,该区间称为该函数的递减区间。
函数单调区间的求法在所求函数的连续区间内如下
1、求导法:导数小于0就是递减,大于0递增,等于0,是拐点极值点
2、定义法:设x1、x2,算出(f(x1)-f(x2))/(x1-x2),大于0就是递增,小于0递减
求单调区间的方法有图像法、定义法、直接法。
1、图像法
对于能作出图像的函数,我们可以通过观察图像确定函数的单调区间,即第一步作出函数图像,二是由单调性的几何意义划分增减区间,最后一步写出单调区间。当函数递增或递减区间由几个区间组成时,一般情况下不能取它们的并集,而应该用“和”、“或”连接。
2、定义法
有些函数如果不能作出函数图像来观察出单调区间,可以用定义法来求其单调区间,即首先可以设X1、X2为该区间内任意的两个值,且X1小于X2,其次作差,令F(X1)-F(X2),并通过因式分解、配方、有理化等方法,向有利于判断差值符号的方向变形。
3、直接法
对于我们所熟知的一次函数、二次函数、反比例函数等,可以根据它们的特征,直接求出单调区间复合函数单调性的确定
拓展知识
函数单调性的应用。利用函数单调性求最值求函数的最大(小)值有多种方法,但基本的方法是通过函数的单调性来判定,特别是对于小可导的连续点,开区问或无穷区问内最大(小)值的分析,一般都用单调性来判定。
利用函数单调性解方程。函数单调性是函数一个非常重要的性质,由于单调函数中x与y是一对应的,这样我们就可把杂的方程通过适当变形转化为型如“”方程,从而利用函数单调性解方程x=a,使问题化繁为简,而构造单调函数是解决问题的关键。
关于“高数 连续区间怎么求?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
评论列表(3条)
我是华纳号的签约作者“admin”
本文概览:网上有关“高数 连续区间怎么求?”话题很是火热,小编也是针对高数 连续区间怎么求?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。因为f...
文章不错《高数 连续区间怎么求?》内容很有帮助